
456/2 MATHEMATICS Paper 2 JULY, 2014 2½ hours

JINJA JOINT EXAMINATIONS BOARD

Uganda Certificate of Education

MOCK EXAMINATIONS - JULY, 2014

MATHEMATICS

Paper 2

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer ALL questions in Section A and not more than FIVE from section B.

Any additional question(s) answered will not be marked.

All necessary calculations must be shown and should be done on the same page as the rest of the answer.

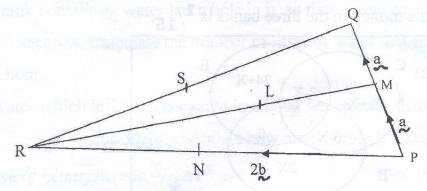
Mathematical tables and graph papers are provided.

Silent, non-programmable scientific calculators may be used.

SECTION A (40 MARKS) Attempt all questions.

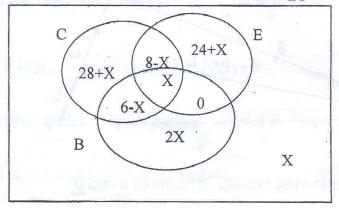
- 1. Express 0.52777....as a fraction in its lowest term.
- 2. Given that $\underline{a} = \begin{pmatrix} 10 \\ -14 \end{pmatrix}$, $\underline{b} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}$ and $\underline{p} = \underline{a} 2\underline{b}$,
 - (i) The value of p
 - (ii) The length of p.
- 3. Two points P(2,5) and Q(4,3) are in a plane find the
 - (a) Coordinates of R, the midpoint of \overline{PQ}
 - (b) Gradient of the line perpendicular to line PQ
- 4. A car travelled at an average speed of 85km h⁻¹ for 5 hours and then it further travelled at an average speed of 69 km h⁻¹ for 3 hours.
 Find the average speed of the car for the whole journey.
- 5. If $f(x) = \frac{3}{x^2 5x + 6}$ Find the values of x for which the function is meaningless.
- 6. Shillings 3,600,000 was shared among six sons, three daughters and one mother in the ratio 4:5:3 respectively. Find how much each daughter got.
- 7. Simplify $2 \log_{10} 5 \log_{10} 0.1 + \log_{10} 4$
- 8. Use logarithm tables only to evaluate $\sqrt[3]{49 \times 0.001464}$
- 9. Find the L.C/M and H.C.F of 78 and 42.

10. Maido bought a printing machine at shs 7,000,000. The depreciation rate of the machine is 14.0% per annum. Calculate the value of the machine after 2 years.

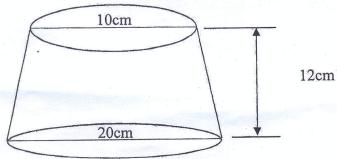

SECTION B (60 MARKS) Attempt any five questions only

11. (a) Evaluate
$$\frac{\left(5\frac{1}{4}\right)^{-2} - \left(4\frac{1}{5}\right)^{-2}}{\left(4\frac{1}{2}\right)^{-2}} \div \mathbf{1}\frac{2}{5}$$
 (6 marks)

(b) Solve the equation


$$log_{10}(x+1) + log_{10}(x-2) = log_{10} 10$$
 (6 marks)

- 12. A line passing through the point M (5,4) is parallel to a line passing through the points T (4,6) and R(2,2). Find the;
 - (a) Equation of the line through M and parallel to line TR. (6 marks)
 - (b) Co-ordinates of the point of intersection of the line in (a) and the line y = -x + 6. (6 marks)
- 13. In the figure below, PQ = 2a and PN = 2NR = 2b. M and S are the mid-points of \overline{PQ} and \overline{QR} respectively. angle is a point on \overline{MR} such that $2\overline{ML} = \overline{LR}$


(a)Express the following vectors in terms of a and b

- (i) MR
- (ii) ML
- (iii) QL
- (b) Show that P, L and S are collinear.
- Amega and Okurut have shares in a company. Amega contributed ug. Shs 400,000,000 as his share capital. Okurut contributed ug shs 600,000,000 as his share capital. In one year the company made a gross profit of ug shs 200,000,000. The company expenses that year were electricity 12,000,000, salaries and wages 55,000,000 and transport 13,000,000. The net profit was shared in proportion to their share capitals.
 - (a) Find the;
 - (i) Total expenditure for the company
 - (ii) Percentage of the company's expenses to the net profit. (6 marks)
 - (b) Calculate how much money each share holder got that year if 10% of this amount went to URA as income tax. (6 marks)
- 15. The venn diagram shows how teachers in Hoima town save their money in different Banks, Centenary(C), Equity(E) and Barclays(B)
 The District Education Officer says that the probability that a teacher does not save any of his money in the three banks is ¹/₁₅.

Using the information above, Determine;

- The number of teachers who save in all the three banks. (i)
- The total number of teachers in Hoima town. (ii)
- Which one of this banks is very popular with the teachers. (iii)
- The probability that a teacher picked at random saves in at least two (iv) banks.
- The ratio in its simplest form of the number of teachers saving in (v) (12 marks) Barclays only to that of Equity only.
- The lampshade shown below has a height of 12cm. It's upper and lower 16. diameters are 10cm and 20cm respectively.

Calculate the area of the material required to cover the curved outer surface of (12 marks) the lampshade.

(use
$$\pi = 3.142$$
)

(a) A tank containing water has a hole in it, so that 15cm3 of water leak out 17. every 5 seconds. Calculate the number of litres of water lost from the tank (6 marks) every hour.

The water which leaks out is caught in a bowl which is in shape of a hemisphere of radius 30cm. Calculate how many hours it takes to fill the bowl. (6 marks)

M. GUIDE 456/2 2014

Questio	n Solution	Marks	Comment
1.	Let $r = 0.52777$		
	$1000r = 527.777 \dots$	M1	
	100r = 52.777	M1	
*	000 = 475		
	475	A1	
	$r = \frac{1}{900}$		
	$=\frac{95}{}$		
	180	A1	
	$r = \frac{475}{900}$ $= \frac{95}{180}$ $= \frac{19}{36}$	I A I	
	30		
2.	$\check{P} = \check{a} - 2\check{b}$	2.61	
	$= (10)_{-2}(-4)$	M1	
	$\left(-14\right)^{-2}\left(5\right)$		9
	$= {10 \choose -14} - 2 {-4 \choose 5}$ $= {10 \choose -14} + {8 \choose -14}$ $= {18 \choose -24}$	7.	
	$\begin{pmatrix} -14 & -10 \end{pmatrix}$		
	$=\begin{pmatrix} 18\\24 \end{pmatrix}$	A1	
	121 (22)	M1	
	$ \tilde{P} = \sqrt{18^2 + (-24)^2}$		
	$=\sqrt{324-576}$		
	$=\sqrt{900}$		
	= 30	A1	
	Coordinates of R are		
3.		M1	
	$\left(\frac{2+4}{2}, \frac{5+3}{2}\right)$	IVII	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A 1	
*	(3,4)	A1	
	Gradient of PQ is	D.1	
	$\frac{5-3}{2-4} = \frac{2}{2} = -1$	B1	
	2-4 2		
	Conditions of its marmondiaular is ± 1	B1	
	Gradients of its perpendicular is + 1.	M1	
4.	Distance $I = 85 \times 5 = 425 \text{ km}$	M1	
	Distance II = $69 \times 3 = 207 \text{ km}$	IVII	
		7.71	
	Average speed = $\frac{425+207}{5+3}$	M1	
	$=\frac{632}{1}$		56
	8		
	$= 79 \text{ kmh}^{-1}$	A1	
5.	F(x) is meaning less when	B1	
J.	$X^2 - 5x + 6 = 0$		
	$X^2 - 3x - 0$ $X^2 - 3x - 2x + 6 = 0$		-
	X(x-3) - 2(x-3) = 0	M1	1 10
	(x-3)(x-2) = 0	A1,A1 fo	nr
	X - 3 = 0 or $x - 2 = 0$	each	
	X = 3 X = 2	Cacii	
6.	Total ratio is $4+5+3=12$	2	
, F	8		
1	5	M1	
	$\frac{5}{12} \times 3,600,000$		
	$5 \times 300,000$		
	1, 500, 000	A1.	8

	Each daugh	ter got	00.000		
	1500,000		M1		
	= shs. 500, 0	000	3	A1	
7. $2 \log_{10} 5 - \log_{10} 0.1 + \log_{10} 4$ $\log_{10} 5^2 + \log_{10} 4 - \log_{10} 0.1$		M1M1			
	$Log_{10}(\frac{25 \times 4}{0.1})$ $= log_{10} \frac{25 \times 4 \times 10}{1}$				
	$= \log_{10} 1000$ $= \log_{10} 10^{3}$ $= 3\log_{10} 10$			M1	
	= 3			A1	
8.	No 49 0.001464	s.d 4.9×10^{1} 1.464×10^{1}	$\frac{\log}{1.6902}$	+ B1	Reading logs
			$=\overline{2}.8557$ $=\overline{3}+1.85$	M1 M1	
	$\sqrt[3]{49} \times 0.00$		= Antilog $\overline{1.6192}$ = 41.61	A1	
9.	2	78	42		
	3	39	21	M1M1	
	7	13	71		
	13	13	1		
	L.C.M = 2 × = 54			A1	
	H.C.F = 2 = 6			A1	
10.	$\frac{86}{100} \times \frac{86}{100} \times 70$ $86 \times 86 \times 70$ $= 5,177,200$	7 000,000		M1M1M1 A1	
$ \begin{array}{c} -3,177,200 \\ \text{Or } 7,000,000 \left(1 - \frac{14}{100}\right)^2 \\ 7,000,000 \times 0.86^2 \end{array} $			M1M1 M1		
	= 5,177,200			A1	
11. (a)	$\frac{(5\frac{1}{4})^2 - (4\frac{1}{5})^2}{(4\frac{1}{2})^2}$	$\frac{2}{3}$ \div $1\frac{2}{5}$			
1	$\frac{{\binom{21}{4}}^2 - {\binom{21}{5}}^2}{{\binom{9}{2}}^2}$ $\frac{{\binom{21}{4}} + {\frac{21}{5}}){\binom{21}{4}}}{{\binom{9}{2}}^2}$	$\frac{7}{5}$		M1	
	$\frac{(\frac{1}{4} + \frac{1}{5})(\frac{1}{4} $	$\frac{7}{5}$		M1	

- 1	$\frac{(\frac{105+84}{20})(\frac{105-84}{20})}{\frac{81}{4}} \cdot \frac{7}{5}$	M1	*
	20 / 20 /		
	<u>81</u> 5	T 0	_ "
	4		
	$((\frac{189}{189})(\frac{21}{21}) \div \frac{81}{2}) \div \frac{7}{2}$	M1	
	$\left(\left(\frac{189}{20}\right)\left(\frac{21}{20}\right) \div \frac{81}{4}\right) \div \frac{7}{5}$ $\left(\frac{189}{20}\right)\left(\frac{21}{20}\right) \times \frac{4}{81}\right) \times \frac{5}{7}$		
*	189 21 4 5	3.61	
	$(\frac{10}{2})(\frac{1}{2}) \times \frac{1}{2}) \times \frac{1}{2}$	M1	
	20 20 81 7		
	(21) (3) 4		
	$(\frac{21}{4})(\frac{3}{20}) \times \frac{4}{9}$		
	7		
	$=\frac{7}{20}$	A1	
	20		
	1		
			3
(b)	$I_{-0.0} (v_1 + 1) + I_{-0.0} (v_1 + 2) = I_{-0.0} + I_{-0.0}$		
	$Log_{10}(x+1) + log_{10}(x-2) = log_{10}10$		
	$Log_{10}(x+1)(x-2) = log_{10}10$	M1	_
	(x+1)(x-2) = 10	M1	
	$X^2 - x - 2 = 10$		-
		M1	
	$X^2 - x - 12 = 0$	1	
	(x-4)(x+3) = 0	M1	1
	X - 4 = 0 or $x + 3 = 0$	1411	
1		1	3.69
	X = 4 or X = -3	A1A1	
12. (a)	Gradient of line TR		
		M1 A 1	
	$\frac{6-2}{4-2} = \frac{4}{2} = 2$	M1A1	
	4-2 2		
5 19		>	
	Equation of line through (5,4) with gradient 2 is		
	$\frac{y-4}{x-5}=2$	M1	140
	y - 4 = 2x - 10	M1	
	y = 2x - 6		
	y-2x-6	M1A1	
(b)	To find the coordinates, we solve		
(0)			
	y = 2x - 6 and $y = -x + 6$ simultaneously		
	2x - 6 = -x + 6	M1	
	3x = 12	M1	100 0
	x = 4		
B		A1	
	y = 2(4) - 6	M1	
	y = 2	A1	a a
1	, , , , , , , , , , , , , , , , , , ,	111	
	—		
	Coordinates are (4, 2)	B1	
13. (a)	(i) $MR = MP + PR$	M1	
15. (4)		1411	
^ =	$= -\tilde{a} + 2\tilde{b} \qquad -9 + 3\tilde{b}$ Or $= 2\tilde{b} - \tilde{a} \qquad 3\tilde{b} - \tilde{a}$		
1	Or $= 2\tilde{h} - \tilde{a}$	Å1	
	01 DD W 55 ~ W		
	(11)	1	i .
	(ii) $ML = \frac{1}{2} LR$		
	(ii) $ML = \frac{1}{2}LR$	M1	A 1 25
•	$ML = \frac{1}{2}LR$ $= \frac{1}{2}MR$	M1	x 2 00 00 00 00 00 00 00 00 00 00 00 00 0
.*	(11) $ML = \frac{1}{2}LR$ $= \frac{1}{3}MR$ $= \frac{1}{3}(27 - 2)$	M1 A1	a to A
***	(11) $ML = \frac{1}{2}LR$ $= \frac{1}{3}MR$ $= \frac{1}{3}(2\tilde{b} - \tilde{a})$ 35	1	4 1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
***	(11) $ML = \frac{1}{2}LR$ $= \frac{1}{3}MR$ $= \frac{1}{3}(2\tilde{b} - \tilde{a})$ 35	1	
***	(11) $ML = \frac{1}{2}LR$ $= \frac{1}{3}MR$ $= \frac{1}{3}(2\tilde{b} - \tilde{a})$ 35	1	
	(11) $ML = \frac{1}{2}LR$ $= \frac{1}{3}MR$ $= \frac{1}{3}(2\tilde{b} - \tilde{a})$ 35	1	

	$-a + \frac{1}{3}(2b - a)$	35-6)	
	$=\frac{-3a+2b-a}{3}$		
	$=\frac{2b-4\tilde{a}}{3}$	Al	
	$= -\tilde{a} + \frac{1}{3}(2\tilde{b} - \tilde{a}) \qquad -\tilde{a} + \frac{1}{3}(2\tilde{b} - $	Al	
(b)			
	$= \tilde{a} + \frac{1}{3}(2\tilde{b} - \tilde{a}) \text{at } \gamma \text{3b}$	141	
	$\pm \frac{3\tilde{a}+2\tilde{b}-\tilde{a}}{3}$	M1	
	$=\frac{2\tilde{a}+2\tilde{b}}{3}$		
	$=\frac{2}{6}(\tilde{a}+\tilde{b})$	A1	
	20. +35		
	LS = LQ + QS	Mıl	
	$= LQ + \frac{1}{2} (QP + PR)$ = $\frac{2}{3} (2\tilde{a} - \tilde{b}) + \frac{1}{2} (2\tilde{b} - 2\tilde{a})$	TVI	
	$=\frac{4(2\tilde{a}-\tilde{b})+3(2\tilde{b}-2\tilde{a})}{6}$		
	8ã -4ĥ+6ĥ-6ã		
	$=\frac{8\tilde{\alpha}-4\tilde{b}+6\tilde{b}-6\tilde{a}}{6}$ $=\frac{2\tilde{\alpha}+2\tilde{b}}{6}$ $=\frac{2\tilde{\alpha}+2\tilde{b}}{6}$		
	$=\frac{2a+2b}{6}$		
	$=\frac{2\alpha+2b}{6}$ $=\frac{1}{3}(\tilde{a}+\tilde{b})$	A1	
	Since \widetilde{PL} and \widetilde{LS} have vector $(\tilde{a} + \tilde{b})$ in commo		
	then they are parallel.	BI	
	And since L is the common point then they lie	on A1	
	one straight line implication is they are collinea	r. A1	-
14. (a)	(i) Total expenditure	12	
	= 12,000,000 + 55,000,000 + 13,000,000	M1	
	Shs, 80,000,000	A1	
	(ii) Net Profit		
	=200,000,000-80,000,000	M1	
	Shs, 120,000,000	A1	
	80,000,000		
	$\frac{120,000,000}{120,000,000} \times 100\%$	M1	
	66.667%		
	00.00770		
,\$	≈ 66.7%	A1	
(b)	≅ 66.7% Share ratio	A1	
(b)	≅ 66.7%	A1 M1	

	Amega got		
	$\left \frac{2}{5} \times 120,000,000 \times \frac{90}{100}\right $	M1	
	Shs, 43,200,000	A1	
	Okurut got		
	$\frac{3}{5} \times 120,000,000 \times \frac{90}{100}$	M1	
	Shs. 64,800,000	Al	
	5113. 04,000,000	12	
15.	Total number of teachers is		
	28 + x + 24 + x + 2x + 8 - x + 6 - x + x + x	M1	
	= 66 + 4x	A1	
	$\frac{x}{x} = \frac{1}{x}$		
	$\frac{66+4x}{15x} = \frac{15}{15}$ $15x = 66 + 4x$	M1	
	11x = 66		
	$x = 6$ E_{90}	M1	
		A1	
	C ₄₂		
	X \ \ \ \	3 4 3	
	34 /2 30	.	
	34 2 30		
	12		
*	B ₁₈ 6		
	(i) $n (c n E n B) = 6$	B1	
	(ii) $n(\in) = 66 + 4 \times 6 = 90$	B1	
	(iii) Centenary bank	B1 M1	
	2+6	IVI I	
	90 /	A1	
	90 or	. 1	- 100
	4/5		
	(v) 12:30	M1	
	(iv) $\frac{\frac{2}{90}}{\frac{9}{90}}$ or $\frac{\frac{4}{45}}{45}$ (v) $\frac{12:30}{2:5}$	A1	
		The second	
1			
			4
16.			

(i) $n (c n E n B) = 6$ (ii) $n(\in) = 66 + 4 \times 6 = 90$ (iii) Centenary bank (iv) $\frac{2+6}{90}$ $\frac{8}{90}$ or $\frac{4}{45}$ (v) $12:30$ 2:5	B1 B1 M1 A1 M1 A1
16.	B1 Sketch
$\frac{10}{20} = \frac{x}{12+x}$ $\frac{1}{2} = \frac{x}{12+x}$ $2x = 12 + x$ $X = 12$	M1 A1

	81 1	<u> </u>	
2 (5) 2 = (5)		4	
,	$1 = \sqrt{5^2 + 12^2} \\ = \sqrt{169}$	M1 A1	
	1 = 13		
	24 L		
	10		
	$L = \sqrt{24^2 + 10^2}$	M1	
	$= \sqrt{676}$ $L = 26$	A1	
	Area of curve surface = $3.142 \times 10 \times 26 - 3.142 \times 5 \times 13$	M1M1 M1	
-1	$= 816.92 - 204.23$ $= 612.69 \text{ cm}^2$	Al	
		12	
17.	(a) In 5 secs \rightarrow 15 cm ² leaks out In 1 sec $\rightarrow \frac{15}{3}$	M1	
	= 3 5cm ³ leaks out 3 cm	A:1	
	In 1 hour $5 \times 60 \times 60 \text{ cm}^3$ $3 \neq 60 \times 60 \text{ cm}^3$ = 18,000 cm ³ leaks out	M1	
	Number of litres = $\frac{18000}{1000}$	A1	
×	= 18 litres	M1 A1	
	(b) Volume of hemisphere = $\frac{2}{3} \times \frac{22}{7} \times 30 \times 30 \times 30$	M1	2
,1	volume of hemisphere = $\frac{1}{3} \times \frac{1}{7} \times 30 \times 30 \times 30$ = 56571.42 cm ³	Al	
-	Volume in litres to fill = $\frac{56571.42}{1000}$	M1 A1	
	= 56.57142 ≈ 56.57 lites		